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SUMMARY

Three kinds of algorithms for the lattice Boltzmann equation of the BGK model in the implementation of
the no-slip boundary condition on the wall are assessed by using the analytical formula for the slip velocity
of the fully developed pressure-driven channel flow. It is shown that the bounce-back algorithm results in
the spatial accuracy of 1st order, except for the case when the wall is located at half way between the two
grid lines. The interpolation scheme proposed by Yu et al. (Prog. Aerospace Sci. 2003; 39:329–367) and
the similar one by Bouzidi et al. (Phys. Fluids 2001; 13(11):3452–3459) are of 2nd order, but the error
increases quadratically with the relaxation time. The extrapolation scheme of Guo et al. (Phys. Fluids
2002; 14(6):2007–2010) is also shown to be of 2nd order, and the error level increases linearly with
the relaxation time, but it turns out that this scheme is unstable for a certain range of parameter values.
Numerical experiments with various parameter sets have been performed to obtain the stability diagram.
Three algorithms are then applied to a circular-Couette flow and their performance is also studied in terms
of the numerical accuracy and stability. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lattice Boltzmann method (LBM) has been employed in the numerical simulation of various
flow problems, and nowadays it is highly promising as an alternative to the existing numerical
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methods based on the Navier–Stokes (N–S) equations, such as finite volume method (FVM),
finite element method (FEM), or its kinds [1]. Most important advantages of this method are
as follows: first, we do not have to solve the pressure equation; second, the program code is
very simple; and third, it is suitable for flow problems involving complex geometry and multi-
phase flows. Recent applications of LBM to multiphase flows include deformation, merging
and splitting of droplets [2–4], formation, motion, growth and detachment of bubbles [5–8],
phase separation and transition [9, 10], and filling in casting process [11]. Very recently, appli-
cations are increasingly found in the field of microfluidics, starting from the formulation of the
governing equations [12, 13] to the problem of ion transport [14], electro-osmotic flows [15, 16], and
mixing [17].

Among several problems with LBM, which are still open to further improvement, the present
study is devoted to the problem with the implementation of the no-slip boundary condition. The
fundamental difficulties in the boundary-condition implementation with LBM arise from the fact
that, in the governing equation of LBM, the dependent variables are the distribution functions,
not the velocity components. Therefore, we must specify the boundary values of the distribution
functions, before the so-called ‘streaming’ process, for the links pointing to the fluid region at the
nodes inside the wall. Unfortunately in LBM, however, the velocity components are calculated
by the moment of the distribution functions, and the number of the functions that contribute
to each of the velocity components is 6 for the two-dimensional case. Therefore, determining
the distribution-function values explicitly from the velocity constraint at the boundary must be a
non-trivial task.

Starting from the simplest scheme, i.e. the bounce-back (B-B) scheme algorithm, several schemes
have been so far proposed as the method of no-slip-condition implementation. Inamuro et al. [18]
proposed to evaluate the unknown distribution functions in the same form as the equilibrium
functions with the density and velocity components determined in such a way that the no-slip
condition is satisfied on the boundary wall. However, this scheme is applicable only when the wall
matches with the lattice links. Noble et al. [19] proposed to use not only the velocity equations
but also the energy equation to determine the three distribution functions, in two-dimension,
on the links heading to the fluid; but their method is again applicable only to the case where
lattice nodes are located on the wall. A very simple extrapolation scheme was suggested by
Chen et al. [20], but its stability was not addressed. After that, various forms of interpolation
schemes have been proposed to improve the numerical accuracy and to resolve the stability
problem [21–26]. However, it seems that we have much room for improvement in the method
of implementation of the no-slip boundary conditions with respect to the numerical accuracy and
stability of LBM. Development of accurate and stable algorithms for the no-slip boundary condition
should be a prerequisite step toward establishing the feasibility and enlarging the range of LBM
applications.

In this study, we analyzed three existing algorithms used as the no-slip boundary condi-
tion for the LBM employing the BGK model by applying them to the fully developed
pressure-driven channel flow; they are the B-B scheme, the method of Yu et al. [26] and
the method of Guo et al. [27]. It turned out that the numerical error is in most cases
caused by the slip velocity on the wall arising from the specific algorithms. To obtain
the slip velocity, we employed the distribution-function relations, based on the work of
Zou et al. [28] and He et al. [29], derived under the assumption of fully developed state.
The algorithms were further assessed for the case of curved boundaries, i.e. a circular-
Couette flow.
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2. LATTICE BOLTZMANN EQUATIONS AND NUMERICAL METHODS

To solve the two-dimensional channel flow both numerically and analytically, we employed the
incompressible model of the LBM with nine links, i.e. ID2Q9 [30]. Figure 1 shows square lattices
and the sequence of the link numbers used in the present ID2Q9 model. The evolution equation
to be solved for the distribution function is

fk(x+ek�t, t+�t)= fk(x, t)+ 1

�
[ f (eq)

k (x, t)− fk(x, t)] (1)

where fk(x, t) denotes the distribution function of the particle at a discrete space (lattice node) x
at a discrete time t , which is supposed to travel along the link number k during the time interval
�t . � is the relaxation time. The particle has the velocity ek , which is defined in such a way that
the particle arrives at the neighboring node situated at the other end of the link number k after one
time step �t . As usual we take �x=�t=1, as we take the physical grid size �x∗ and the physical
time step �t∗ as the reference quantities in the scaling; further explanation for the scaling of the
variables will be given below. The equilibrium function f (eq)

k (x, t) on the right-hand side of (1) is
defined as

f (eq)
k =wk

[
�+�0

(
ek ·u
c2s

+ (ek ·u)2

2c4s
− u·u

2c2s

)]
(2)

where wk is the weight factor, i.e. w0= 4
9 , wk = 1

9 for k=1–4 and wk = 1
36 for k=5–9, and cs= 1√

3

is the speed of sound. The density � and the velocity u are computed using �=∑8
k=0 fk and

�0u=∑8
k=1 ek fk , where �0 is the reference density; we can also take �0=1 without loss of

generality. The density � is a property of the flow. In other words, in the incompressible model, �0
corresponds to the ‘real’ fluid density, which is not the flow property, and � should be considered
as a kind of pressure; p=�/3.

Note that all the variables treated in this paper are based on the lattice unit; the spatial coordinates
are scaled by the grid spacing �x∗, the time by the time step �t∗, the distribution function by
the density �∗

0, the velocity by c∗ =�x∗/�t∗, and the pressure by �∗
0c

∗2. The asterisks used here
indicate the dimensional variables.

To confirm the analytical formula of the slip velocity, to be given in the following section,
we must compare the analytical results with those obtained numerically for the lattice-Boltzmann
equation (LBE). In what follows we explain the numerical methods applied to solve (1). Here we
confine ourselves to the channel flow; special features for the curved boundary will be addressed in
Section 5 upon necessity. We first construct the grid system within the channel. In the streamwise
direction the total number of grids is L , and the channel length in the lattice unit is the same as
this; this means that the inlet of the channel is situated at half way between the first two stations
(i=0 and 1) and the outlet at half way between the last two stations (i= L and L+1). We build
N grids across the channel section, i.e. between the top and the bottom solid walls. The channel
height is then N−1+2� in the lattice unit, where � (to be referred to as ‘link ratio’ hereafter)
denotes the distance from each of the walls to the nearest grid line toward the fluid side as shown
in Figure 2. We choose the channel’s aspect ratio close to 4; L/N ≈4. The Reynolds number is

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1353–1378
DOI: 10.1002/fld



1356 Y. K. SUH, J. KANG AND S. KANG

1

2

3

4

56

7 8

0

∆x

∆x

Figure 1. Square lattices for the ID2Q9 model and link numbers.
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Figure 2. Grid lines and the j-indices of nodes near the bottom wall of the channel.

simply defined as Re=umaxN/�, where � is the dimensionless viscosity related to the relaxation
time by �=(2�−1)/6, and umax is the velocity at the centerline of the channel.

One cycle of the iterative numerical procedure in solving the LBE (1) is basically composed
of three steps. In the first ‘collision’ step, the time is fixed and the distribution function f̃k(x, t) is
calculated using

f̃k(x, t)= fk(x, t)+ 1

�
[ f (eq)

k (x, t)− fk(x, t)] (3)

where the tilde symbol indicates the function just after the collision, i.e. before the streaming. In
the second step, the boundary conditions are applied to determine the values of f̃k(x, t) for the
links heading toward the fluid side at the nodes outside of the fluid domain, such as the node ‘s’ in
Figure 2. The cycle is closed by the third ‘streaming’ step, in which each of f̃k(x, t) is transmitted,
with the unit time elapse, to the neighboring node dictated by the link number k:

fk(x+ek, t+1)= f̃k(x, t) (4)
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DOI: 10.1002/fld



ASSESSMENT OF ALGORITHMS IN THE LBE OF BGK MODEL 1357

As the inlet boundary conditions we need to specify three distribution functions for the links
heading toward the fluid side at the station i=0. We simply applied the B-B principle, which can
be expressed in terms of the discrete variables as follows:

f̃ 01, j = f̃ 13, j +6w1uin(y j )

f̃ 05, j−1= f̃ 17, j +6w5uin(y j )

f̃ 08, j+1= f̃ 16, j +6w8uin(y j )

where the superscript indicates the station number, i.e. i , and uin(y) represents the parabolic
velocity profile specified at the inlet as

uin(y)=4umaxy(yc− y)/(N−1+2�)2 (5)

The normal coordinate y has its origin at the bottom wall and its discrete value is given by
y j = j−1+�. yc is the value of y at the channel center; yc=(N−1+2�)/2. The maximum
velocity umax is fixed at umax=0.1 unless otherwise stated in the present numerics. Note that the
velocity profile (5) also corresponds to the exact solution to the fully developed channel flow.
The pressure gradient (or the density gradient in terms of the LBM variables) is automatically
determined through the computation.

As the algorithm for the outlet boundary condition, we developed a new method to implement
the constant average density and the fully developed flow properties at the outlet. The algorithm
can be simply expressed as

f̃ L+1
k, j = f̃ L

k, j +wk(1−�L) (k=0,1, . . . ,8) (6)

where �L is the average of � at the station i= L . By employing this simple algorithm we can
effectively establish the following properties:

uL+1
j =uLj , �L+1=1 (7)

where uij indicates the streamwise velocity component at the discrete point (i, j). The target value

for the outlet station’s average density �L+1 is taken to be the same as �0. The net result is that
the upstream density is adjusted automatically in such way that −��/�x>0 provides the given
flow rate specified at the inlet.

Implementation of the boundary conditions on the solid walls, which is the main issue of this
study, is addressed in the following sections because the specific algorithms directly affect the
slip velocity. The numerical value of the slip velocity on the solid wall is computed by using the
2nd-order extrapolation scheme at the central station i=(L+1)/2:

uw = 1
2 (1+�)(2+�)u1−�(2+�)u2+ 1

2�(1+2�)u3

The normalized slip velocity is then given by Uw =uw/umax.
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The numerical error is quantified by the root mean square (rms) of the difference between
the normalized velocity, obtained from the numerical computation after the steady state has been
reached, and that from the analytic solution at the central station

�=
√√√√ 1

N

N∑
j=1

[uin(y j )/umax−u j/umax,n]2 (8)

where umax,n is the maximum velocity of the numerical solution u j occurring at the centerline of
the channel. If the error is caused purely by shifting of the u-profile as much as the slip velocity
uw, that is, if the numerical solution takes the form u j =uw +uin(y j ), it can be shown that

�∼=|Uw|/√5 (9)

The numerical computation reaches a steady state mostly within 10 000 time steps under various
parameter sets, and therefore we conducted 30 000 time-step calculations to obtain the steady state
while carefully monitoring the results.

3. ANALYTICAL SOLUTION FOR THE SLIP VELOCITY

In this section we derive the formula for the slip velocity expected to occur on the solid walls of
the pressure-driven flow within a two-dimensional channel, caused by the implementation of the
‘imperfect’ algorithms for the no-slip boundary conditions on the walls. Our formulation is based on
the work of Zou et al. [28] and He et al. [29]. In this study we generalize the method to the case when
the walls are located at an arbitrary position between two neighboring grids parallel to the walls.

We assume that at the steady fully developed state the distribution function can be decomposed
into two parts:

fk =wk�(x)+gk(y) (10)

In other words, we assume that the pressure is independent of y and the streamwise velocity is
independent of x . From the above decomposition, we can derive the following formula for the
discrete value gk, j :

g1, j =w1(3u j +3u2j )+w1��� (11a)

g2, j =w2(−1.5u2j−1)/�+(�−1)g2, j−1/� (11b)

g3, j =w3(−3u j +3u2j )−w3��� (11c)

g4, j =w4(−1.5u2j+1)/�+(�−1)g4, j+1/� (11d)

g5, j =w5(3u j−1+3u2j−1)/�+(�−1)g5, j−1/�+w5�� (11e)

g6, j =w6(−3u j−1+3u2j−1)/�+(�−1)g6, j−1/�−w6�� (11f)

g7, j =w7(−3u j+1+3u2j+1)/�+(�−1)g7, j+1/�−w7�� (11g)

g8, j =w8(3u j+1+3u2j+1)/�+(�−1)g8, j+1/�+w8�� (11h)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1353–1378
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where �� denotes the density gradient in the lattice unit, i.e. ��=−d�/dx ; at the fully developed
state �� is constant. The discrete streamwise velocity can be expressed in terms of gk, j as

u j =(g1, j −g3, j )+(g5, j −g6, j )+(g8, j −g7, j ) (12)

The slip-velocity formula presented in this paper was obtained by coupling several equations
relating the nodal-point velocities near the solid walls. These relations can be grouped into two:
one group includes the ‘general’ formula, which is not affected by the specific algorithm for the
no-slip boundary condition, and the other group includes the ‘specific’ formula, which reflects the
detailed algorithm for the no-slip condition. We first derive the ‘general’ formula in the beginning
of this section. The specific formula will be derived in the following subsections. We restrict our
attention to the nodes near the bottom wall without loss of generality. First we can show, by
employing (11a)–(11h) and (12) in the expression of u1, u2, and u3, the following relation:

u3−2u2+u1= −2��

2�−1
(13)

In more detail, in the expression of u2, we just replace the first term on the right-hand side of (12)
with j =2 by

g1,2−g3,2=2u2/3+2���/9 (14)

which can be derived from (11a) and (11c) with j=2. For u1, we follow the same way for the
first term in (12) with j =1, but we use (11e) and (11f) with j =2 to treat the second term
and j =1 to treat the third term. For u3, we use (11e) and (11f) with j =3 for the second term
and j =2 for the third term. Eliminating the term (g5,2−g6,2)+(g8,2−g7,2) from these three
representations, we obtain (13). Equation (13) is nothing but the discretization, at j =2, of the
balance equation between the viscous term and the pressure-gradient term in the N–S equations;
�2u/�y2=−2��/(2�−1)=constant. In fact, this relation holds at any interior nodal point except
the nodes nearest to the walls, i.e. j =1 and N . Knowing this constant, we can construct the
parabolic velocity profile in terms of the three velocity values u1, u2, and u3 as

u=− ��

2�−1
(y−1−�)2+ u3−u1

2
(y−1−�)+u2 (15)

We can assume that, due to the symmetric property of the solution, the slip velocity at the lower
wall y=0 is the same as that at the top wall y=N−1+2�. Applying this assumption to (15)
yields the following relation:

u3−u1= 2(N−3)��

2�−1
(16)

Substitute (16) into (15) to eliminate u3 and evaluate the result at the wall y=0 to obtain a formula
of the slip velocity:

uw =−�(1+�)��

2�−1
+(1+�)u1−�u2 (17)

On the other hand, in terms of the slip velocity we can also express the velocity profile in another
form as follows:

u=uw − ��

2�−1
y(y−N+1−2�) (18)
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Evaluating this at yc produces the maximum velocity umax:

umax=uw + (N−1+2�)2 ��

4(2�−1)
(19)

The normalized slip velocity is defined as

Uw =uw/umax (20)

We need more equations to derive the explicit formula for computing the normalized slip velocity
in terms of N , �, and �. The detailed formula as well as the number of these equations required
is dependent on the specific algorithm employed for the no-slip boundary conditions on the walls,
as mentioned previously.

3.1. B-B boundary condition

The B-B algorithm just returns back the distribution function carried by the particle sent from a
neighboring fluid node toward a solid node beyond the wall [30]. Implementation of this algorithm
in the code for the LBM is very simple. In addition, we can expect that the mass as well as the
momentum is conserved. But, this does not necessarily mean that the no-slip condition is also
satisfied on the wall. The slip-velocity formula for the B-B algorithm has been presented by He
et al. [29], but their expression was found to be erroneous as will be shown in the last part of this
subsection.

The B-B boundary condition can be formulated as follows:

f2,1= f̃4,1= f4,1+ 1

�
( f (eq)

4,1 − f4,1) (21a)

f5,1= f̃7,1= f7,1+ 1

�
( f (eq)

7,1 − f7,1) (21b)

f6,1= f̃8,1= f8,1+ 1

�
( f (eq)

8,1 − f8,1) (21c)

We wish to derive the relationship between u1 and u2 based on this algorithm. First, we start from
the definition of u1, i.e. from (12) with j =1. The first term on the right-hand side can be evaluated
as 2u1/3+2���/9. To manipulate the second term, we subtract (21c) from (21b) to obtain

g5,1−g6,1=− 1

6�
u1+ 1−�

�
(g8,1−g7,1) (22)

Then the equation for u1 becomes

3(2�+1)u1=4�2��+18(g8,1−g7,1) (23)

On the other hand, similar treatment can be applied to the formulation of u2 starting from (12)
with j =2. It leads to the following equation:

3�2(2�−1)u2−3(�−1)u1=�2(4�2−4�−1)��+18(3�2−3�+1)( f8,1− f7,1) (24)
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In the derivation of this formula, (11e) and (11f) with j =2 were used to replace the second term
on the right-hand side of (12), and (11g) and (11h) with j =1 for the third term. Then (22) was
used to eliminate (g5,1−g6,1). Now we can eliminate (g8,1−g7,1) from (23) and (24) to arrive at

−u2+3u1= (8�2−8�+5)��

3(2�−1)
(25)

Now, from the five relations (13), (16), (17), (19), and (20) applicable to any type of boundary
conditions, and one relation (25) specific for the B-B algorithm, we can derive the following
formula for the normalized slip velocity expected to be obtained when the B-B boundary condition
is applied:

Uw = K

3(N−1+2�)2+K
(26)

where K is composed of two terms:

K =K0+K1N (27)

and

K0=2[8�2−8�−(6�2−6�+1)] (28a)

K1=6(1−2�) (28b)

We note from this result that the spatial accuracy of the B-B algorithm is in general of 1st order
because K1 is non-zero, except for the special case �=0.5 at which the algorithm is of 2nd order.
This is consistent with the well-known fact that the B-B boundary condition is 2nd order if and
only if the boundary is just at half way between the two grid lines. We can also see that there
exists a critical � at which the slip velocity vanishes:

�c= 1
4 {2+

√
6[(2�2−2�+1)+(2�−1)N ]} (29)

For instance, we obtain �c=0.933 independent of N with �=0.5, and �c=2.087 with �=0.6
at N =31. We also note that the slip velocity increases with O(�2) for large �. Figure 3 shows
the slip velocity as well as the scaled error �′ given by �′ =√

5�. Note that the analytical solution
is in excellent agreement with the numerical solution. The fact that the scaled error �′ is also in
exact agreement with |Uw| (refer to Equation (9)) means that the numerical error from the LBE is
caused by the shifting of the velocity profile as much as the slip velocity, as clarified previously.
The value of �c is in excellent agreement with �c=2.087 predicted by (29). Figure 4 shows the
plots of �c for various values of �, as a function of the number of grids N , given by (29). It is
seen that �c increases as � is increased. It also increases with N for �>0.5. However, �c exists
only when ��0.5+1/(4N ), approximately, which can be derived from (29).

Figure 5 shows the dependence of the magnitude of the slip velocity on the grid resolution.
Again, the analytical solutions predict the numerical solutions very accurately except for high
relaxation time and low resolution regimes. At �=0.5, the slip velocity is at the lowest level and
it reveals the 2nd-order behavior. At �=0; however, the slip velocity is at a higher level and the
accuracy is close to the 1st order. The accuracy level for �=1 at high � is almost the same as that
for �=0, as can be understood from formulas (26)–(28b).
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Figure 3. The normalized slip velocity Uw (solid line and filled symbols) and the scaled rms error (dash-dot
line and open symbols) given by the analytical formula (lines) and by the numerical simulations (symbols)
with the bounce-back algorithm at N =31 and �=0.6 for the channel flow. The dash-dot line in the

region �>2.2 falls on the solid line.
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Figure 4. The critical relaxation time (29) as a function of N with various values of � in the bounce-back
algorithm of the no-slip boundary condition for the channel flow.

It should be, however, pointed out that the formula derived in this study is different from
that derived by He et al. [29]. In fact, they considered only the case of �=1. As an example,
for the parameter set �=1, N =31, and �=5, the numerical solution to the full LBE produces
Uw =0.0411. At the same parameter set, formula (26) gives a very close result Uw =0.0412,
whereas the formula presented by He et al. yields a slightly different value Uw =0.0371. We
conjecture that there must be unknown cause of error in their formulation.
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Figure 5. Dependence of the slip-velocity magnitude on the grid resolution given by analytical (solid lines)
and numerical (symbols) results for the bounce-back algorithm for the channel flow: squares, �=0.5,

�=1; deltas, �=0, �=1; gradients, �=0, �=10.

3.2. Interpolation schemes

The fundamental idea of the various kinds of interpolation schemes is the same as in the B-B
algorithm; it returns back the distribution function carried by the particle sent from the neighboring
fluid node. In the interpolation scheme, however, the distribution-function value that is to be
transmitted back to the fluid node is dependent on the wall position, �. Several methods have been
proposed regarding the effective calculation of this value. Among them, we select the algorithm of
Yu et al. [26] because in their algorithm a single formula is used regardless of the value of �. In the
last paragraph of this subsection, the result for the algorithm of Bouzidi et al. [24] is presented.

The interpolation scheme proposed by Yu et al. [26] can be expressed as

f i2,1= 1

1+�
[(1−�) f i4,1+� f̃ i4,1]+

�

1+�
f i2,2 (30a)

f i5,1= 1

1+�
[(1−�) f i7,1+� f̃ i7,1]+

�

1+�
f i+1
5,2 (30b)

f i6,1= 1

1+�
[(1−�) f i8,1+� f̃ i8,1]+

�

1+�
f i−1
6,2 (30c)

We replace tilde variables by non-tilde variables by using (3) and subtract (30c) from (30b) to
obtain

g5,1−g6,1= �−�

�+�
(g7,1−g8,1) (31)

where the identities f i5,1− f i6,1=gi5,1−gi6,1 and f i7,1− f i8,1=gi7,1−gi8,1 have been used, and we
dropped the superscript i considering that they are independent of i . Further, in the derivation of
this formula, the term ( f (eq)i

7,1 − f (eq)i
8,1 ) was replaced by −u1/6 as can be inferred from (2), and
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the term ( f (eq)i+1
5,2 − f (eq)i−1

6,2 ) was formulated as ( f (eq)i+1
5,2 − f (eq)i−1

6,2 )=u1/(6�)+(�−1)(g5,1−
g6,1)/�, which can be derived from (10), (11e), and (11f) with j =2. On the other hand, in the
representation of u1, i.e. (12) with j =1, we replace the first term on the right-hand side by
2u1/3+2���/9 as before. Now, we substitute (31) into the second term in (12), and the result is
u1=6�(g8,1−g7,1)/(�+�)+2���/3. We also follow a similar manner in representing u2 starting
from (12) with j =2. Now we eliminate (g8,1−g7,1) from these two equations to obtain

�(2�−1)u2+[−2(1+�)�+�+1]u1=− 1
3 (4�

2−2�+3�)�� (32)

Again, we have five general relations (13), (16), (17), (19), and (20) and one specific relation (32)
to determine the slip velocity for the algorithm of Yu et al. The result can be expressed in the
form of (26), but K0 and K1 take the following forms:

K0=4(4�2−2�−3�2) (33a)

K1=0 (33b)

From this result, we can see that this algorithm is of 2nd order regardless of the parameter
values chosen. In this case too, there exists a critical � at which slip velocity vanishes:

�c= 1
4 [1+

√
1+12�2] (34)

For instance, we obtain �c=0.5 at �=0, �c=0.75 at �= 1
2 and �c=1.15 at �=1. Therefore, the

zero-slip velocity cannot be attained when we choose �>1.15. On the other hand, we can also
define the critical distance in terms of � as �c=√

2�(2�−1)/3. For instance, we obtain �c=0 at
�=0.5 and �c=√

2/3 at �=1, etc. Figure 6 presents the analytic and numerical results of the slip
velocity and the scaled error, as functions of �, for the algorithm of Yu et al. [26]. The agreement
between the two results is almost perfect, and the critical relaxation time also matches well with
each other. This algorithm’s 2nd-order nature is also confirmed by numerical data together with
the analytical prediction as shown in Figure 7.

The interpolation scheme suggested by Bouzidi et al. [24] is similar to that of Yu et al. [26].
The algorithm takes two different forms depending on � as follows:

f i
k,1

=

⎧⎪⎨⎪⎩
2� f̃ ik,1+(1−2�) f̃ i2k,2 for �� 1

2

1

2�
f̃ ik,1+

2�−1

2�
f̃ i
k,1

for �> 1
2

(35)

where each of the station numbers i2= i, i+1, i−1 and each of the link numbers k=4,7,8 are
matched with the link numbers k=2,5,6, respectively. Following the same procedure as above,
we can derive the formula in the same form as (26), where now

K0=
{
4[4�2−2(1+2�)�+�(2−3�)] for �� 1

2

4[4�2−2(3−2�)�+2−2�−3�2] for �> 1
2

(36a)

K1=0 (36b)
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Figure 6. The normalized slip velocity Uw (solid line and filled symbols) and the scaled rms error
(dash-dot line and open symbols) given by the analytical formula (lines) and by the numerical
simulations (symbols) for the algorithm of Yu et al. [26] at N =31 and �=1 in the channel flow.

The dash-dot line in the region �>1.3 falls on the solid line.
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Figure 7. Dependence of the slip-velocity magnitude on the grid resolution given by the analytical
(solid lines) and numerical (symbols) results for the algorithm of Yu et al. [26] in the channel flow:

squares, �=0.5, �=1; deltas, �=0.5, �=5.

Therefore, this algorithm is also of 2nd order. The critical relaxation time is given by

�c=

⎧⎪⎨⎪⎩
[1+2�+

√
1−4�+16�2]/4 for �� 1

2

[3−2�+
√
1−4�+16�2]/4 for �> 1

2

. (37)
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Formula (36a) was verified in this study from the numerical simulation of the LBE. It can be
shown that K0 values given by the algorithm of Bouzidi et al., (36a), evaluated at �=0 and 1
are the same as those given by the algorithm of Yu et al., (33a), at the same � values. A slight
difference exists in K0 between the two for the other values of �. For instance, at �=3 and �= 1

2 ,
we obtain K0=117 from (33a) and K0=97 from (36a). As a whole, the two algorithms can be
thought of as the same kind, but the algorithm of Yu et al. is preferred because it is composed of
a single formula.

Although both the interpolation schemes investigated above are of 2nd-order accuracy, the slip
velocity increases quadratically with � similar to that in the B-B scheme, which is the primary
disadvantage of these schemes.

3.3. Extrapolation scheme of Guo et al.

Contrary to the other schemes, the one proposed by Guo et al. [27] performs the collision process
at the solid nodes; the solid node is denoted as ‘s’ in Figure 2. The distribution function at the
solid node after the collision step is obtained by

f̃k,s = f (eq)
k,s + f̃ (ne)

k,s (38)

The first term on the right-hand side is given from (2) with the nodal velocity components, for the
case of the fully developed channel flow, given by the extrapolation scheme

us =�1u1+�2u2 (39)

Their suggestions for the constants �1 and �2 are

�1=
{

�−1 for �<0.75

(�−1)/� for ��0.75
(40a)

�2=
{−(1−�)2/(1+�) for �<0.75

0 for ��0.75
(40b)

The non-equilibrium part f̃ (ne)
k,s in (38) is given from the interpolation formula

f̃ (ne)is
k,s =� f̃ (ne)i

k,1 +(1−�) f̃ (ne)i2
k,2 (41)

where the constant � is proposed by them to be determined by

�=
{

� for �<0.75

1 for ��0.75
(42)

The station numbers in (41) are is= i2= i for k=2; is= i−1 and i2= i+1 for k=5; and is= i+1
and i2= i−1 for k=6. The non-equilibrium function f̃ (ne)

k, j on the right-hand side of (41) is
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obtained from

f̃ (ne)
k = 1−�

�
( f (eq)

k − fk) (43)

Then we can express from (41) as follows:

f5,1=w5(�+3us+3u2s )+ f̃ (ne)
5,s (44a)

f6,1=w6(�−3us+3u2s )+ f̃ (ne)
6,s (44b)

where the tilde variables on the left-hand side are replaced by appropriate non-tilde variables
considering the subsequent streaming process. Subtract (44b) from (44a) and apply (41) to replace
the non-equilibrium functions at the solid nodes by those at j =1 and 2. Then we use (43) to
eliminate the non-equilibrium terms at the fluid nodes to derive the equation relating (g5,1−g6,1),
(g5,2−g6,2), us , u1, and u2. On the other hand, by subtracting (11f) from (11e) with j =2 we
obtain another equation relating (g5,1−g6,1), (g5,2−g6,2), u1, and ��. From these two equations,
we can eliminate the term (g5,2−g6,2) to obtain the formula relating (g5,1−g6,1), us , u1, u2, and
��. We need two more equations to eliminate (g5,1−g6,1) from this. These two equations are
given from (12) with j =1 and 2, respectively. From the above three equations, we can eliminate
(g5,1−g6,1) and (g8,1−g7,1) to obtain the following simple relation:

u2−2u1+us = [(6�−10)�+(5−6�)]��
3(2�−1)

(45)

As before, we use (13), (16), (17), (19), (20), (45), and (39) to obtain the formula of the normalized
slip velocity. The result can also be expressed in the form of (26) with the two coefficients
expressed as

K0= 4

1−�1−�2
[(10−6�)�−11+6�−6�2+3�(1−�)(1−�1−�2)] (46a)

K1= 12

1−�1−�2
[1+�2−�(1−�1−�2)] (46b)

Note that the above formula can be applied for an arbitrary choice of �, �1, and �2. However,
when �1 and �2 satisfy the relation

�2= �

1+�
(2−�1)−1 (47)

we have K1=0 and the algorithm becomes of the 2nd order. In this case formula (46a) reduces to

K0=4(1+�)

[
(10−6�)�+6�−5

2−�1
−3�

]
(48)

The values of �1 and �2 determined by formulas (40a) and (40b) as suggested by Guo et al. [27]
indeed satisfy the criterion (47), and therefore their parameter selection gives the 2nd-order accu-
racy. However, we should also note that their suggestion corresponds to only one special case, and
we can consider infinite sets of �1 and �2 that lead to the 2nd-order accuracy. Further discussion
regarding this is given below. Under the condition of (47), we can derive the formula for the
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critical relaxation time at which the slip velocity becomes zero:

�c= 5−6�+3�(2−�1)

10−6�
(49)

Compared with other methods addressed in this study, the method of Guo et al. [27] has clear
advantages as to the accuracy. The slip velocity is proportional to � as shown in (48), and therefore
we can expect a lower error at higher � values compared with other schemes. Further, two free
parameters, i.e. � and �1, can be used to make the error as small as possible; this variant will be
referred to as the modified algorithm of Guo et al. However, proper choice of these parameters
must be related to the numerical instability inherent in the extrapolation schemes.

Figure 8 shows the dependence of the normalized slip velocity and the scaled rms error on
the relaxation time for two parameter sets. The analytic data of Uw again predict the numerical
data very accurately. The scaled error is also predicted very accurately by the analytic formula,
except for a slight difference at high relaxation time for the case with �=1 and some difference
at low relaxation time. The figure also shows a clear picture of the linear dependence of the slip
velocity on the relaxation time. As was predicted from the present theory, the method of Guo
et al. is of the 2nd order as can be seen from Figure 9. Although the algorithm of Guo et al.
has three free independent parameters, �, �1, and �2, they proposed to determine these parameter
values uniquely by using formulas (40a), (40b), and (42) for a given � value. Thus, following
their suggestion, we can plot the slip-velocity contour in the parameter space (�,�) as shown in
Figure 10. The linear increase in the slip velocity with the relaxation time is again confirmed from
this figure. The slip velocity is on the whole at a lower level than the other two algorithms analyzed
in this paper, especially at high values of �. The region ��0.75, however, shows the magnitude
almost twice the one in the other region for the same �. The reason for using such discontinuous
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U
w
, ε

'
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Figure 8. The normalized slip velocity Uw (solid lines and filled symbols) and the scaled rms error
(dash-dot lines and open symbols) given by the analytical formula (lines) and by the numerical simulations
(symbols) for the algorithm of Guo et al. [27] at N =31 in the channel flow: squares, �=0.5, �=0.5,

�1=−0.5, �2=−0.167; deltas, �=1, �=1, �1=0, �2=0.
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Figure 9. Dependence of the slip-velocity magnitude on the grid resolution given by the analytical
(solid lines) and numerical (symbols) results for the algorithm of Guo et al. [27] in the channel
flow: squares, �=1, �=1, �1=�2=0, �=1.2; deltas, �=0.5, �=0.5, �1=�2=0, �=2; gradients,

�=0.5, �=0.5, �1=�2=0, �=10.
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Figure 10. Contour plot of the normalized slip velocity Uw given by the analytic solution for the original
algorithm suggested by Guo et al. [27] in the channel flow.

parameters was to avoid the numerical instability occurring when the formulas of �, �1, and �2
in (42), (40a), and (40b), which are applicable for the range ��0.75, were applied to the case with �
close to 0.
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4. FURTHER DISCUSSIONS ON EXTRAPOLATION SCHEMES

While performing numerical computations for a variety of parameter values we have found that
the algorithm suggested by Guo et al. [27] is still unstable for a certain range of parameter values
when we follow formulas (40a), (40b), and (42). To study the numerical instability, we make the
parameters free from their parameter-selection formula. The relevant parameters associated with
the numerical instability are then �, �, �, �1, and �2. In this study, we assume that �2 is determined
with (47) in order to maintain the 2nd-order accuracy. Then we are left with four independent
parameters. First, we fix �=1 and test the numerical stability in the parameter space (�,�1) for
various � values, and the results are shown in Figure 11(a). On the whole, the scheme is the
most stable near �=0.5. It also shows that the range of �1 for the stability is shrunk as � is
increased. To check the dependence of the stability on �, we now fix �=0 and obtain the stability
range of �1 as shown in Figure 11(b). It is seen that the range is almost invariant of � for � less
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Figure 11. Stability diagrams of the modified algorithm of Guo et al. [27] obtained from the numerical
test for the channel flow. The open and closed symbols denote the upper and lower limits of �1 for the
stable computation, respectively. In (a), � is fixed at �=1 and � is changed, whereas in (b), (c), and

(d), � is fixed and � is changed.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1353–1378
DOI: 10.1002/fld



ASSESSMENT OF ALGORITHMS IN THE LBE OF BGK MODEL 1371

than 0.6. In the region �>0.6, the upper limit of �1 for the stability decreases rapidly as � is
increased. Similar trend was observed for the case of �=1, as shown in Figure 11(c), but in this
case the lower limit of �1 is also increased. Figure 11(d) shows the case with �=0 but at lower �
values. This plot shows only the lower limit of �1 because the upper limit is almost independent
of �. The sensitive increase in the lower limit is again detected at � larger than 0.6.

So far we have considered not only the accuracy but also the stability aspect of the algorithm of
Guo et al. [27]. This is the right time to propose a modified scheme for both stable and accurate
results. Dependence of the numerical accuracy on the parameters �, �, and �1 can be understood
by directly looking into the formula for K0, i.e. (48). In most cases the accuracy becomes lower
at higher � values. From (48) we can see that, for �>1, the increase in � leads to a smaller slip
velocity. It also reveals that the decrease in �1 brings a lower error too. Thus, as for the numerical
accuracy, � must be large and �1 must be small, if possible. On the other hand, the stability
diagrams of Figure 11(a)–(d) indicate that we must consider the limit of these values to avoid
numerical instability. If we were allowed to select just one set of parameter values considering
these aspects, we may choose

�=0.6, �1=−0.2 (50)

as a proper parameter set. With this selection, the modified scheme is stable for all possible choices
of parameter values if �>0.52 (or Re<465 with umax=0.1 and N =31). The magnitude of the
slip velocity with this set-up is checked by using the analytic formula, and the result is shown
in Figure 12. Comparing this result with Figure 10, we can see that, in the region �<0.75, the
suggested scheme provides almost the same level of the slip velocity as the original scheme. In
the other region, ��0.75, the proposed scheme yields the level of slip velocity half that of the
original scheme. The proposed parameter set (50), however, may not be the most proper for other
geometries such as a circular-Couette flow as demonstrated in the following section.
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Figure 12. Contour plot of the normalized slip velocity Uw given by the analytic solution
with the parameters �=0.6 and �1=−0.2 proposed in this study for the algorithm of

Guo et al. [27] in the channel flow.
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5. ASSESSMENT OF ALGORITHMS FOR CIRCULAR-COUETTE FLOW

We applied the algorithms to a circular-Couette-flow problem in order to catch the extent in
which our assertion holds for flows with curved boundaries. The flow model comprises by an
incompressible fluid confined between a stationary outer circle with radius r2 and an inner circle
with radius r1 rotating with linear velocity u0, see Figure 13. The exact solution is given as [27]

ur =0, u� = u0b

1−b2

(
r2
r

− r

r2

)
(51)

where ur and u� are the radial and azimuthal components of the velocity vector u=(ur ,u�),
respectively, and b=r1/r2. The number of grids are N×N and the center of the circles is at
xc= yc=N/2. The Reynolds number is defined here as Re=u0(r2−r1)/� and the rms error is
defined as the root mean square of the normalized-velocity-vector difference reading

�=
√

1

N f

∑
i, j

|[uexa(xi , y j )−unum(xi , y j )]/u0|2 (52)

where summation is over all the fluid nodes and N f stands for the number of fluid nodes.
We tested three algorithms for the no-slip boundary condition at the circles; the B-B scheme, the

method of Yu et al. [26] and the method of Guo et al. [27]. Implementation of the B-B scheme is
the simplest because it is independent of the link ratio � as shown by (21a)–(21c). Employing the
method of Yu et al. [26], i.e. (30a)–(30c), is also straightforward. For the method of Guo et al. [27],
we apply (38) to obtain the distribution function f̃k,s at a solid node. Here the non-equilibrium
part f̃ (ne)

k,s is computed without difficulty by using the interpolation scheme (41). In computing the

N=i0=j=i

j=N

r

r2

r1

Figure 13. Configuration of the Couette-flow model between concentric circles.
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equilibrium part f (eq)
k,s by using (2) we need to know the velocity vector at the solid node us . We

can use a different value, i.e. uk,s , for a different link given by the following interpolation scheme:

uk,s =(1−�1−�2)uk,b+�1uk, f +�2uk,ff (53)

where uk,b denotes the velocity imposed at the boundary point on the link k, uk, f the fluid velocity
at the nodal point ‘ f ’ located at the other end of the link k, and uk,ff the fluid velocity at the nodal
point ‘ff’ one more link further away from the node ‘ f ’ along the k-direction. However, it turned
out that this method yielded lower accuracy and poor stability. Therefore, we applied a single
value of us in computing f (eq)

k,s regardless of the link. Employed in this study is a weighted-average
technique as follows:

us =
∑

k (n·ek)uk,s/|ek |∑
k (n·ek)/|ek | (54)

where summation is over all the links that cross the boundary and n is a unit normal to the
boundary drawn from the solid grid point. In the above formulation, the weight factor corresponds
to (n·ek)/|ek | representing the direction cosine of the link k referring to n. This method turned
out to improve both the numerical accuracy and the stability significantly.

Among the various parameters affecting the numerical results, we fix u0=0.01 and b=0.5. The
outer circle’s radius r2 is determined by r2=N/2−2.5. We also set N =52 as the standard grid.
Figure 14(a) shows typical variations of the rms errors upon the change of � for three algorithms.
It reveals that the modified method of Guo et al. [27] (‘ModGuo’ hereafter) with �=2 and �1=−1
gives the most accurate results. On the other hand, the method of Yu et al. [26] is accurate only at
small � values. The critical value �c for the case of the method of Yu et al. (simply ‘Yu’ hereafter) is
much smaller than that of the other methods, being consistent with the previous analysis, e.g. (34).
We can also confirm the quadratic increase in � with � for both the ‘B-B’ method and Yu’s method.
Yu’s method becomes less accurate than B-B at �>1.2; of course, this is due to the coarse grids
used, i.e. N =52. Figure (14b) demonstrates the effect of the parameter set (�,�1) on the rms
error for ModGuo. With �=0.6 being fixed, decrease in �1 yields an enhanced accuracy at the
supercritical regime (�>�c). It also provides increased �c; this is also in line with the previous
analysis as seen from (48). The error level produced by the OriGuo (dashed line) is almost the same
as that of ModGuo with �=0.6 and �1=−0.2. On the other hand, with �1=−1 fixed, increase
in � does not affect the change of �c but enhances the accuracy. Overall, increase in � (roughly
up to �=2) and/or decrease in �1 (roughly down to �1=−1) results in a higher accuracy, which
is consistent with the previous analysis. However, as an adverse effect, it also causes numerical
instability. As a typical case, ModGuo with �=2 and �1=−1 cannot give a stable solution at
�=0.6. This instability problem becomes more pronounced at higher grid resolutions.

Figure 15 compares the effect of N on � for different algorithms. Except for B-B, all the
algorithms exhibit 2nd-order accuracy. It also indicates that ModGuo with �=2 and �1=−1
produces the most accurate results. On the other hand, we can observe that � fluctuates significantly
with N especially for B-B and Yu. In order to clarify the main reason for such sensitive dependence
of � on N , we fixed r2=37.5 and N =80, and changed r1 from 17.5 to 19. Figure 16 shows the
variation of � with r1 for the case B-B. The general trend is that � increases suddenly with a slight
increase in r1 at several points; this is the most pronounced at r1=18. It was found from numerical
computations for a more localized range near r1=18 that a sudden jump occurs while r1 switches
from 18.026 to 18.028; these numbers are very close to the square root of 325. Therefore, we have
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Figure 14. Distribution of the rms error � versus the relaxation time � for the circular-Couette flow:
(a) comparison among three algorithms and (b) effect of � and �1 in the modified Guo’s method.

The dashed line in (b) is obtained from the original method of Guo et al. [27].

found from further analysis that, during this switching, 96 ‘boundary links’ (links that intersect the
circular boundary) change its link ratio � from the values very close to 0 to the ones very close
to 1; a fraction of these links among all the boundary links on the inner circle is exceptionally
large at this r1. Such a sudden shift in the histogram of � should cause fluctuation of � observed
in Figure 15. This fluctuation becomes weaker when the circles’ center is off the grid point, e.g.
with xc=N/2−0.2 and yc=N/2−0.3. It was also found that such a sudden jump in � is much
weaker when r2 is varied while r1 is fixed.

As mentioned several times previously, increasing � and decreasing �1 cause enhanced accuracy
but simultaneously bring an adverse effect, the stability problem. Therefore, we have performed
numerical calculations to obtain stability diagrams in the parameter space (�,�1) as shown in
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Figure 15. Dependence of the rms error on the grid resolution obtained by four
algorithms for the Couette flow.
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Figure 16. Rms error � versus the inner circle’s radius r1 obtained numerically by using the bounce-back
scheme for the Couette flow with N =80 and r2=37.5 fixed.

Figure 17(a) for the upper limit values of � and Figure 17(b) for the lower limit values of �
at N =102. The diagrams indicate that stability is mostly determined by � rather than by �1.
Increase in � in the supercritical regime (Figure 17(a)) and decrease in � in the subcritical regime
(Figure 17(b)) are shown to reduce the stable region. For the case with �=2, stability can be
attained with the range �1=−1.0–2.0 at �=2.0 (supercritical) and with the range �1=−0.8–2.0
at �=0.7 (subcritical).
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Figure 17. Stability diagrams in the parameter space (�,�1) obtained numerically by using the modified
algorithm of Guo et al. [27] for the circular-Couette flow with N =102: (a) the upper limit values of
� and (b) the lower limit values of �. Open symbols denote the upper limit of �1, and closed symbols

denote the lower limit, similar to Figure 11.

6. CONCLUSIONS

It was confirmed from the theoretical and numerical analyses of the simple channel flow and the
circular-Couette flow that the numerical accuracy of LBM is dependent on the algorithm used to
implement the no-slip boundary condition at the boundary walls. Among various parameters, we
investigated the effect of the grid size, the relaxation time, and the link ratio on the numerical
accuracy. For the simple channel flow, we derived the analytic formula of the slip velocity for
the methods of B-B, Yu, and Guo. It was shown that the numerical error is mainly caused by
the slip velocity occurring at the solid boundaries. The slip-velocity formula not only confirms
the order of accuracy of the specific method but also quantifies the dependence of accuracy on
the relaxation time � as well as the link ratio �. For the case of B-B and Yu, the slip velocity
quadratically increases with �, whereas for the case of Guo it increases linearly. To improve the
accuracy, we proposed ModGuo in this study, modified algorithm of Guo et al. [27], where the
parameters (�,�1) are allowed to vary. We have shown from the analysis of the channel flow and
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from the numerical solutions to the circular-Couette flow that increasing � and decreasing �1 result
in a significant improvement in the accuracy, in particular at large � values. On the other hand, we
have also shown consistently in both flows that the stable region shrinks when � is increased, in
particular for ModGuo. Therefore, when the accuracy is of our primary importance at relatively
large �, it will be good to use ModGuo with (�,�1) close to (2,−1); the parameter set can be
tuned if instability occurs.
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